OKAN ÜNIVERSİTESİ
FEN EDEBİYAT FAKÜLTESI
Matematik BöLÜmü
2013.05.22

MAT 372 - K.T.D.D. - Final Sınavın Çözümleri
N. Course

Question 1 (Canonical Forms). Consider the second order partial differential equation

$$
\begin{equation*}
\left(\sin ^{2} x\right) u_{x x}+(\sin 2 x) u_{x y}+\left(\cos ^{2} x\right) u_{y y}=x \tag{1}
\end{equation*}
$$

(a) [1p] Calculate the discriminant $\Delta(x, y)$ of (1).

$$
\Delta=B^{2}-4 A C=0
$$

(b) $[2 \mathrm{p}]$ Equation (1) is a
$\square$ hyperbolic PDE; $\quad \checkmark$ parabolic PDE; $\quad \square$ elliptic PDE.
(c) [2p] Find the characteristic equation of (1).

$$
\frac{d y}{d x}=\frac{B \pm \sqrt{\Delta}}{2 A}=\cot x
$$

(d) [5p] Find the characteristic curve(s) of (1).
[HINT: $\int \sec z d z=\log |\sec z+\tan z|+c, \int \cot z d z=\log |\sin z|+c$ and $\int \operatorname{cosec} z d z=-\log |\operatorname{cosec} z+\cot z|+c$ ]

$$
y=\log \sin x+c
$$

$$
\begin{equation*}
\left(\sin ^{2} x\right) u_{x x}++(\sin 2 x) u_{x y}+\left(\cos ^{2} x\right) u_{y y}=x \tag{1}
\end{equation*}
$$

(e) [15p] Find a canonical form for (1).
[HINT: $x$ and $y$ MUST NOT appear in your answer, I only want to see $u, \xi$ and $\eta$.]
[HINT: $\cos ^{2} z=1-\sin ^{2} z$.]

$$
\begin{aligned}
& \text { Letting } \xi=y-\log \sin x \text { and } \eta=y \text {, we have } \boxed{3} \\
& \qquad \begin{array}{r}
\xi_{x}=-\cot x
\end{array} \quad \xi_{y}=1 \quad \xi_{x x}=\frac{1}{\sin ^{2} x} \quad \xi_{x y}=0 \quad \xi_{y y}=0 \\
& \eta_{x}=0 \quad \xi_{y}=1 \quad \xi_{x x}=0 \quad \xi_{x y}=0 \quad \xi_{y y}=0
\end{aligned}
$$

Therefore 3

$$
\begin{gathered}
A^{*}=B^{*}=0 \\
C^{*}=0+0+\cos ^{2} x \cdot 1=\cos ^{2} x \\
D^{*}=\sin ^{2} x\left(\frac{1}{\sin ^{2} x}\right)+0+0+0+0=1 \\
E^{*}=0+0+0+0+0=0 \\
F^{*}=0 \\
G^{*}=x
\end{gathered}
$$

Therefore 3

$$
\cos ^{2} x u_{\eta \eta}+u_{\xi}=x
$$

Finally, we calculate that $\log \sin x=y-\xi=\eta-\xi$. Therefore $\sin x=e^{\eta-\xi} \Longrightarrow \cos ^{2} x=$ $1-\sin ^{2} x=1-e^{2(\eta-\xi)}$ and $x=\sin ^{-1} e^{\eta-\xi}$.
Hence, the answer 6 is

$$
\left(1-e^{2(\eta-\xi)}\right) u_{\eta \eta}+u_{\xi}=\arcsin e^{\eta-\xi}
$$

Question 2 (Ortogonality).
(a) [3p] Let $f, g:[\alpha, \beta] \rightarrow \mathbb{R}$ be 2 piecewise continuous functions. Give the definition of the inner product of $f$ and $g$ on $[\alpha, \beta]$.
[HINT: Repeating students should assume that the weighting function is $w(x) \equiv 1$ - in other words; give the definition of the $L^{2}$-inner product on $[\alpha, \beta] .3^{r d}$ year students can ignore this comment.]

$$
\langle f, g\rangle=\int_{\alpha}^{\beta} f(x) g(x) d x
$$

(b) [6p] Show that the inner product satisfies the following conditions for all piecewise continuous functions $f, g, h:[\alpha, \beta] \rightarrow \mathbb{R}$ and for all $\lambda, \mu \in \mathbb{R}$ :
(a) $\langle f, f\rangle \geq 0$;
(b) $\langle f, g\rangle=\langle g, f\rangle$;
(c) $\langle\lambda f+\mu g, h\rangle=\lambda\langle f, h\rangle+\mu\langle g, h\rangle$; and
(d) $\langle f, \lambda g+\mu h\rangle=\lambda\langle f, g\rangle+\mu\langle f, h\rangle$.
(a) Clearly $\langle f, f\rangle=\int_{\alpha}^{\beta}(f(x))^{2} d x \geq 0.2$
(b) That $\langle f, g\rangle=\int_{\alpha}^{\beta} f(x) g(x) d x=\int_{\alpha}^{\beta} g(x) f(x) d x=\langle g, f\rangle$ is trivial. 1
(c) $\langle\lambda f+\mu g, h\rangle=\int_{\alpha}^{\beta}(\lambda f(x)+\mu g(x)) h(x) d x=\lambda \int_{\alpha}^{\beta} f(x) h(x) d x+\mu \int_{\alpha}^{\beta} g(x) h(x) d x=$ $\lambda\langle f, h\rangle+\mu\langle g, h\rangle .2$
(d) Follows immediately from (ii) and (iii). 1
(c) $[2 \mathrm{p}]$ Give the definition of an orthogonal system of functions on $[\alpha, \beta]$.

The set of functions $\left\{\phi_{n}\right\}$ is called an orthogonal system on $[\alpha, \beta]$ iff $\left\langle\phi_{n}, \phi_{m}\right\rangle=0$ for all $n \neq m$.

Let $L>0$ and define $\phi_{n}:[-L, L] \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\phi_{n}:=\cos \frac{n \pi x}{L} . \tag{2}
\end{equation*}
$$

(d) [14p] Show that $\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is an orthogonal system on $[-L, L]$.
[HINT: $\cos (A+B)+\cos (A-B)=$ ? and $\cos (A+B)-\cos (A-B)=$ ?]
For $n \neq m$, we calculate that

$$
\begin{aligned}
\left\langle\phi_{n}, \phi_{m}\right\rangle & =\int_{-L}^{L} \cos \frac{n \pi x}{L} \cos \frac{m \pi x}{L} d x \boxed{2} \\
& =\int_{-L}^{L} \frac{1}{2} \cos \frac{(n+m) \pi x}{L}+\frac{1}{2} \cos \frac{(n-m) \pi x}{L} d x \boxed{4} \\
& =\frac{1}{2}\left[\frac{L}{(n+m) \pi} \sin \frac{(n+m) \pi x}{L}+\frac{L}{(n-m) \pi} \sin \frac{(n-m) \pi x}{L}\right]_{-L}^{L} \sqrt{4} \\
& =0.4
\end{aligned}
$$

Question 3 (Integration of Fourier Series). Let $L>0$ and define $f:[0, L] \rightarrow \mathbb{R}$ by $f(x) \equiv 1$.
(a) $[10 \mathrm{p}]$ Calculate the Fourier Sine Series of $f$ on $[0, L]$.
[HINT: "Fourier Sine Series" means that you should have $a_{n}=0$ for all $n=0,1,2,3, \ldots$ ]
[HINT: The formulae on page 2 are for a function $g:[-L, L] \rightarrow \mathbb{R}$, so don't just copy them blindly: Do you remember how we changed the formulae to calculate the Fourier Sine/Cosine series of a function $g:[0, L] \rightarrow \mathbb{R} ?]$

$$
\begin{aligned}
b_{k} & =\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} \sin \frac{k \pi x}{L} d x=\frac{2}{L}\left[-\frac{L}{k \pi} \cos \frac{k \pi x}{L}\right]_{0}^{L} \\
& =\frac{2}{k \pi}\left(1-(-1)^{k}\right) 5
\end{aligned}
$$

Therefore

$$
1 \sim \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left(1-(-1)^{k}\right)}{k} \sin \frac{k \pi x}{L}=\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{1}{k} \sin \frac{k \pi x}{L} 5
$$

(b) [10p] By integrating your answer to (a), show that

$$
x \sim-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{1}{k^{2} \pi} \cos \frac{k \pi x}{L}+\frac{4 L}{\pi}\left(\frac{1}{\pi}+\frac{1}{3^{2} \pi}+\frac{1}{5^{2} \pi}+\frac{1}{7^{2} \pi}+\ldots\right)
$$

$\left[\right.$ HINT: $\left.\int_{0}^{x} 1 d t=[t]_{0}^{x}=x\right]$

$$
\begin{align*}
x & \sim \int_{0}^{x} \frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{1}{k} \sin \frac{k \pi t}{L} d t \boxed{3} \\
& =\left[-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{L}{k^{2} \pi} \cos \frac{k \pi t}{L}\right]_{0}^{x} \sqrt{2} \\
& =-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{L}{k^{2} \pi} \cos \frac{k \pi x}{L}+\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{L}{k^{2} \pi} \cos \frac{0}{L} 2 \\
& =-\frac{4}{\pi} \sum_{k=1,3,5, \ldots} \frac{1}{k^{2} \pi} \cos \frac{k \pi x}{L}+\frac{4 L}{\pi}\left(\frac{1}{\pi}+\frac{1}{3^{2} \pi}+\frac{1}{5^{2} \pi}+\frac{1}{7^{2} \pi}+\ldots\right) 3 \tag{3.}
\end{align*}
$$

(c) [5p] Given that the Fourier Cosine Series for $x$ is

$$
x \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

where $a_{0}=\frac{2}{L} \int_{0}^{L} x d x$, show that

$$
\begin{equation*}
1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{9^{2}}+\ldots=\frac{\pi^{2}}{8} \tag{3}
\end{equation*}
$$

And an easy problem to finish with: Since $a_{0}=\frac{2}{L} \int_{0}^{L} x d x=\frac{2}{L}\left[\frac{1}{2} x^{2}\right]_{0}^{L}=L 1$, we can see that

$$
\frac{L}{2}=\frac{a_{0}}{2}=\frac{4 L}{\pi}\left(\frac{1}{\pi}+\frac{1}{3^{2} \pi}+\frac{1}{5^{2} \pi}+\frac{1}{7^{2} \pi}+\ldots\right) \cdot 3
$$

Rearranging gives the required formula. 1

Question 4 (Separation of Variables). Consider the heat equation on a rod of length $L$ :

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x}  \tag{4}\\
u_{x}(0, t)=0 \\
u(L, t)=0 \\
u(x, 0)=h(x) .
\end{array}\right.
$$

(a) [5p] If $u(x, t)=X(x) T(t)$, show that $X$ and $T$ satisfy

$$
X^{\prime \prime}+\lambda X=0 \quad \text { and } \quad T^{\prime}+k \lambda T=0
$$

for some constant $\lambda \in \mathbb{R}$.
Since $X T^{\prime}-u_{t}=k u_{x x}=k X^{\prime \prime} T$, we have that $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{k T(t)} 2$. The left-hand side is a function only of $x$; the right-hand side is a function only of $t$. Therefore both sides must be equal to a constant; equal to $-\lambda$ say 2 . Then $\frac{X^{\prime \prime}}{X}=-\lambda \quad \Longrightarrow \quad X^{\prime \prime}+\lambda X=0$ and $\frac{T^{\prime}}{k T}=-\lambda \Longrightarrow T^{\prime}+k \lambda T=0 \quad 1$.
(b) [3p] What boundary conditions does $X$ satisfy?

First note that $0=u_{x}(0, t)=X^{\prime}(0) T(t)$ and $\left.0=u_{L}, t\right)=X(L) T(t)$. Since we don't want $T(t)=0 \forall t$, we must have... optional

$$
\left\{\begin{array}{l}
X^{\prime}(0)=01.5 \\
X(L)=0.1 .5
\end{array}\right.
$$

(c) [12p] By considering the cases $\lambda<0, \lambda=0$ and $\lambda>0$ separately, find all the eigenvalues and eigenfunctions of

$$
X^{\prime \prime}+\lambda X=0
$$

subject to the boundary conditions that you wrote in part (b).
CASE 1: $\lambda<0$.
The solution of $X^{\prime \prime}+\lambda X=0$ is $X(x)=A e^{\sqrt{-\lambda} x}+B e^{-\sqrt{-\lambda} x}$. Then $0=X^{\prime}(0)=A \sqrt{-\lambda} e^{0}-$ $B \sqrt{-\lambda} e^{0} \Longrightarrow A=B$; and $0=X(L)=A\left(e^{\sqrt{-\lambda} L}+e^{-\sqrt{-\lambda} L}\right) \quad \Longrightarrow A=0 \quad \Longrightarrow \quad B=0$. There are no eigenvalues and no non-trivial eigenfunctions in this case. 3

CASE 2: $\lambda=0$.
The solution of $X^{\prime \prime}=0$ is $X(x)=A x+B$. Then $0=X^{\prime}(0)=A$ and $0=X(L)=A L+B$ $\Longrightarrow A=0=B$. There are no eigenvalues and no non-trivial eigenfunctions in this case. 3

CASE 3: $\lambda>0$.
The solution of $X^{\prime \prime}+\lambda X=0$ is $X(x)=A \cos \sqrt{\lambda} x+B \sin \sqrt{\lambda} x$. So $0=X^{\prime}(0)=$ $-A \sqrt{\lambda} \sin \sqrt{\lambda} 0+B \sqrt{\lambda} \cos \sqrt{\lambda} 0=B \sqrt{\lambda} \Longrightarrow B=0$; and $0=X(L)=A \cos \sqrt{\lambda} L$. Since we don't want $A=0$, we must have that $\cos \sqrt{\lambda} L=0$. So $\sqrt{\lambda} L=\left(n-\frac{1}{2}\right) \pi, n=1,2,3, \ldots$. So $\lambda_{n}=\left(\frac{\left(n-\frac{1}{2}\right) \pi}{L}\right)^{2}$ are eigenvalues, with eigenfunctions $X_{n}(x)=\cos \frac{\left(n-\frac{1}{2}\right) \pi x}{L} .6$
(d) [5p] Find the general solution of

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x} \\
u_{x}(0, t)=0 \\
u(L, t)=0
\end{array}\right.
$$

The solution of $T_{n}^{\prime}+k \lambda_{n} T_{n}=0$ is $T_{n}(t)=a_{n} e^{-k \lambda_{n} t} 2$. So

$$
u(x, t)=\sum_{n=1}^{\infty} a_{n} e^{-k\left(\frac{\left(n-\frac{1}{2}\right) \pi}{L}\right)^{2} t} \cos \frac{\left(n-\frac{1}{2}\right) \pi x}{L} 3
$$

for some constants $a_{n}$.
Question 5 (Fourier Transforms). [25p] Use the Fourier Transform to solve

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x x}, \quad-\infty<x<\infty, \quad 0<t<\infty  \tag{5}\\
u(x, 0)=f(x)
\end{array}\right.
$$

[HINT: You may give your answer as a double integral, or as a convolution of 2 functions.]
Taking Fourier Transforms, the problem becomes

$$
\left\{\begin{array}{l}
U_{t}=(i \omega)^{3} k U=-i k \omega^{3} U \\
U(\omega, 0)=F(x)
\end{array}\right.
$$

which has solution

$$
\begin{equation*}
U(\omega, t)=F(\omega) e^{-i k \omega^{3} t} \tag{5}
\end{equation*}
$$

If we define $G(\omega)=e^{-i k \omega^{3} t}$, then we have $U(\omega, t)=F(\omega) G(\omega, t)$. So $u(x, t)=g(x, t) * f(x)$ 5 where

$$
g(x, t)=\mathcal{F}^{-1}[G](x, t)=\int_{-\infty}^{\infty} e^{-i k \omega^{3} t} e^{i \omega x} d \omega=\int_{-\infty}^{\infty} e^{-i\left(k \omega^{3} t-\omega x\right)} d \omega
$$

Therefore

$$
u(x, t)=g(x, t) * f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\xi) g(x-\xi, t) d \xi
$$

