

OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜLTESİ MATEMATİK BÖLÜMÜ

2013 05 22	MAT 372 –	K.T.D.D	Final Smavin	Cözümleri	N Course
2013.03.22	MAI 372 -	K.I.D.D	r mai Smavin	Çozumen	n. Course

 $\mathbf{Question} \ \mathbf{1}$ (Canonical Forms). Consider the second order partial differential equation

$$(\sin^2 x)u_{xx} + (\sin 2x)u_{xy} + (\cos^2 x)u_{yy} = x.$$
(1)

(a) [1p] Calculate the discriminant $\Delta(x, y)$ of (1).

$$\Delta = B^2 - 4AC = 0$$

(b) [2p] Equation (1) is a

elliptic PDE.

(c) [2p] Find the characteristic equation of (1).

$$\frac{dy}{dx} = \frac{B \pm \sqrt{\Delta}}{2A} = \cot x$$

- (d) [5p] Find the characteristic curve(s) of (1). [HINT: $\int \sec z \, dz = \log |\sec z + \tan z| + c$, $\int \cot z \, dz = \log |\sin z| + c$ and $\int \csc z \, dz = -\log |\csc z + \cot z| + c$]
 - $y = \log \sin x + c$

$$(\sin^2 x)u_{xx} + (\sin 2x)u_{xy} + (\cos^2 x)u_{yy} = x \tag{1}$$

(e) [15p] Find a canonical form for (1). [HINT: x and y MUST NOT appear in your answer, I only want to see u, ξ and η .] [HINT: $\cos^2 z = 1 - \sin^2 z$.]

Letting $\xi = y - \log \sin x$ and $\eta = y$, we have 3 $\xi_x = -\cot x$ $\xi_y = 1$ $\xi_{xx} = \frac{1}{\sin^2 x}$ $\xi_{xy} = 0$ $\xi_{yy} = 0$ $\eta_x = 0$ $\xi_y = 1$ $\xi_{xx} = 0$ $\xi_{xy} = 0$ $\xi_{yy} = 0$ Therefore 3

Therefore 3

$$A^* = B^* = 0$$

$$C^* = 0 + 0 + \cos^2 x \cdot 1 = \cos^2 x$$

$$D^* = \sin^2 x \left(\frac{1}{\sin^2 x}\right) + 0 + 0 + 0 = 0$$

$$E^* = 0 + 0 + 0 + 0 = 0$$

$$F^* = 0$$

$$G^* = x$$
Therefore 3

$$\cos^2 x u_{\eta\eta} + u_{\xi} = x.$$
Finally, we calculate that $\log \sin x = y - \xi = \eta - \xi$. Therefore $\sin x = e^{\eta - \xi} \implies \cos^2 x = 1 - \sin^2 x = 1 - e^{2(\eta - \xi)}$ and $x = \sin^{-1} e^{\eta - \xi}$.
Hence, the answer 6 is

$$\left(1 - e^{2(\eta - \xi)}\right) u_{\eta\eta} + u_{\xi} = \arcsin e^{\eta - \xi}.$$

Question 2 (Ortogonality).

(a) [3p] Let $f, g: [\alpha, \beta] \to \mathbb{R}$ be 2 piecewise continuous functions. Give the definition of the *inner* product of f and g on $[\alpha, \beta]$.

[HINT: Repeating students should assume that the weighting function is $w(x) \equiv 1$ – in other words; give the definition of the L^2 -inner product on $[\alpha, \beta]$. 3^{rd} year students can ignore this comment.]

$$\langle f,g \rangle = \int_{\alpha}^{\beta} f(x)g(x) \ dx.$$

- (b) [6p] Show that the inner product satisfies the following conditions for all piecewise continuous functions $f, g, h : [\alpha, \beta] \to \mathbb{R}$ and for all $\lambda, \mu \in \mathbb{R}$:
 - (a) $\langle f, f \rangle \ge 0;$
 - (b) $\langle f,g\rangle = \langle g,f\rangle;$
 - (c) $\langle \lambda f + \mu g, h \rangle = \lambda \langle f, h \rangle + \mu \langle g, h \rangle$; and
 - (d) $\langle f, \lambda g + \mu h \rangle = \lambda \langle f, g \rangle + \mu \langle f, h \rangle.$
 - (a) Clearly $\langle f, f \rangle = \int_{\alpha}^{\beta} (f(x))^2 dx \ge 0.$ 2
 - (b) That $\langle f,g\rangle = \int_{\alpha}^{\beta} f(x)g(x) \ dx = \int_{\alpha}^{\beta} g(x)f(x) \ dx = \langle g,f\rangle$ is trivial. 1
 - (c) $\langle \lambda f + \mu g, h \rangle = \int_{\alpha}^{\beta} (\lambda f(x) + \mu g(x))h(x) dx = \lambda \int_{\alpha}^{\beta} f(x)h(x) dx + \mu \int_{\alpha}^{\beta} g(x)h(x) dx = \lambda \langle f, h \rangle + \mu \langle g, h \rangle.$ 2
 - (d) Follows immediately from (ii) and (iii). 1
- (c) [2p] Give the definition of an *orthogonal system* of functions on $[\alpha, \beta]$.

The set of functions $\{\phi_n\}$ is called an *orthogonal system* on $[\alpha, \beta]$ iff $\langle \phi_n, \phi_m \rangle = 0$ for all $n \neq m$.

Let L > 0 and define $\phi_n : [-L, L] \to \mathbb{R}$ by

$$\phi_n := \cos \frac{n\pi x}{L}.\tag{2}$$

(d) [14p] Show that $\{\phi_n\}_{n=1}^{\infty}$ is an orthogonal system on [-L, L]. [HINT: $\cos(A + B) + \cos(A - B) =$? and $\cos(A + B) - \cos(A - B) =$?]

For $n \neq m$, we calculate that

$$\begin{aligned} \langle \phi_n, \phi_m \rangle &= \int_{-L}^{L} \cos \frac{n\pi x}{L} \cos \frac{m\pi x}{L} dx \ 2 \\ &= \int_{-L}^{L} \frac{1}{2} \cos \frac{(n+m)\pi x}{L} + \frac{1}{2} \cos \frac{(n-m)\pi x}{L} dx \ 4 \\ &= \frac{1}{2} \left[\frac{L}{(n+m)\pi} \sin \frac{(n+m)\pi x}{L} + \frac{L}{(n-m)\pi} \sin \frac{(n-m)\pi x}{L} \right]_{-L}^{L} \ 4 \\ &= 0. \ 4 \end{aligned}$$

Question 3 (Integration of Fourier Series). Let L > 0 and define $f : [0, L] \to \mathbb{R}$ by $f(x) \equiv 1$.

(a) [10p] Calculate the Fourier Sine Series of f on [0, L].
[HINT: "Fourier Sine Series" means that you should have a_n = 0 for all n = 0, 1, 2, 3, ...]
[HINT: The formulae on page 2 are for a function g : [-L, L] → ℝ, so don't just copy them blindly: Do you remember how we changed the formulae to calculate the Fourier Sine/Cosine series of a function g : [0, L] → ℝ?]

$$b_{k} = \frac{2}{L} \int_{0}^{L} f(x) \sin \frac{k\pi x}{L} \, dx = \frac{2}{L} \int_{0}^{L} \sin \frac{k\pi x}{L} \, dx = \frac{2}{L} \left[-\frac{L}{k\pi} \cos \frac{k\pi x}{L} \right]_{0}^{L}$$
$$= \frac{2}{k\pi} \left(1 - (-1)^{k} \right) \quad 5$$
Therefore
$$1 \sim \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{\left(1 - (-1)^{k} \right)}{k} \sin \frac{k\pi x}{L} = \frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{1}{k} \sin \frac{k\pi x}{L} \quad 5$$

(b) [10p] By integrating your answer to (a), show that

$$x \sim -\frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{1}{k^2 \pi} \cos \frac{k \pi x}{L} + \frac{4L}{\pi} \left(\frac{1}{\pi} + \frac{1}{3^2 \pi} + \frac{1}{5^2 \pi} + \frac{1}{7^2 \pi} + \dots \right)$$

[HINT: $\int_0^x 1 \ dt = [t]_0^x = x]$

$$\begin{aligned} x &\sim \int_{0}^{x} \frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{1}{k} \sin \frac{k\pi t}{L} dt \ 3 \\ &= \left[-\frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{L}{k^{2}\pi} \cos \frac{k\pi t}{L} \right]_{0}^{x} \ 2 \\ &= -\frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{L}{k^{2}\pi} \cos \frac{k\pi x}{L} + \frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{L}{k^{2}\pi} \cos \frac{0}{L} \ 2 \\ &= -\frac{4}{\pi} \sum_{k=1,3,5,\dots} \frac{1}{k^{2}\pi} \cos \frac{k\pi x}{L} + \frac{4L}{\pi} \left(\frac{1}{\pi} + \frac{1}{3^{2}\pi} + \frac{1}{5^{2}\pi} + \frac{1}{7^{2}\pi} + \dots \right) \ 3. \end{aligned}$$

(c) [5p] Given that the Fourier Cosine Series for x is

$$x \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L}$$

where $a_0 = \frac{2}{L} \int_0^L x \, dx$, show that

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \ldots = \frac{\pi^2}{8}.$$
 (3)

3

And an easy problem to finish with: Since $a_0 = \frac{2}{L} \int_0^L x \, dx = \frac{2}{L} \left[\frac{1}{2} x^2 \right]_0^L = L$ 1, we can see that $\frac{L}{2} = \frac{a_0}{2} = \frac{4L}{\pi} \left(\frac{1}{\pi} + \frac{1}{3^2 \pi} + \frac{1}{5^2 \pi} + \frac{1}{7^2 \pi} + \dots \right).$ Rearranging gives the required formula. 1

Question 4 (Separation of Variables). Consider the heat equation on a rod of length L:

$$\begin{cases}
 u_t = k u_{xx} & 0 < x < L, \quad 0 < t \\
 u_x(0,t) = 0 & \\
 u(L,t) = 0 & \\
 u(x,0) = h(x).
 \end{cases}$$
(4)

(a) [5p] If u(x,t) = X(x)T(t), show that X and T satisfy

$$X'' + \lambda X = 0$$
 and $T' + k\lambda T = 0$

for some constant $\lambda \in \mathbb{R}$.

Since $XT' - u_t = ku_{xx} = kX''T$, we have that $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$ 2. The left-hand side is a function only of x; the right-hand side is a function only of t. Therefore both sides must be equal to a constant; equal to $-\lambda$ say 2. Then $\frac{X''}{X} = -\lambda \implies X'' + \lambda X = 0$ and $\frac{T'}{kT} = -\lambda \implies T' + k\lambda T = 0$ 1.

(b) [3p] What boundary conditions does X satisfy?

First note that $0 = u_x(0,t) = X'(0)T(t)$ and $0 = u_L,t) = X(L)T(t)$. Since we don't want $T(t) = 0 \ \forall t$, we must have...optional

$$\begin{cases} X'(0) = 0 & 1.5 \\ X(L) = 0. & 1.5 \end{cases}$$

(c) [12p] By considering the cases $\lambda < 0$, $\lambda = 0$ and $\lambda > 0$ separately, find all the eigenvalues and eigenfunctions of

$$X'' + \lambda X = 0$$

subject to the boundary conditions that you wrote in part (b).

CASE 1: $\lambda < 0$. The solution of $X'' + \lambda X = 0$ is $X(x) = Ae^{\sqrt{-\lambda}x} + Be^{-\sqrt{-\lambda}x}$. Then $0 = X'(0) = A\sqrt{-\lambda}e^0 - B\sqrt{-\lambda}e^0 \implies A = B$; and $0 = X(L) = A(e^{\sqrt{-\lambda}L} + e^{-\sqrt{-\lambda}L}) \implies A = 0 \implies B = 0$. There are no eigenvalues and no non-trivial eigenfunctions in this case. 3 CASE 2: $\lambda = 0$. The solution of X'' = 0 is X(x) = Ax + B. Then 0 = X'(0) = A and 0 = X(L) = AL + B $\implies A = 0 = B$. There are no eigenvalues and no non-trivial eigenfunctions in this case. 3 CASE 3: $\lambda > 0$. The solution of $X'' + \lambda X = 0$ is $X(x) = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$. So $0 = X'(0) = -A\sqrt{\lambda}\sin\sqrt{\lambda}0 + B\sqrt{\lambda}\cos\sqrt{\lambda}0 = B\sqrt{\lambda} \implies B = 0$; and $0 = X(L) = A\cos\sqrt{\lambda}L$. Since we don't want A = 0, we must have that $\cos\sqrt{\lambda}L = 0$. So $\sqrt{\lambda}L = (n - \frac{1}{2})\pi$, n = 1, 2, 3, ... So $\lambda_n = \left(\frac{(n-\frac{1}{2})\pi}{L}\right)^2$ are eigenvalues, with eigenfunctions $X_n(x) = \cos\frac{(n-\frac{1}{2})\pi x}{L}$. (d) [5p] Find the general solution of

$$\begin{cases} u_t = k u_{xx} & 0 < x < L, \quad 0 < t \\ u_x(0,t) = 0 & \\ u(L,t) = 0. & \end{cases}$$

The solution of
$$T'_n + k\lambda_n T_n = 0$$
 is $T_n(t) = a_n e^{-k\lambda_n t}$ 2. So
$$u(x,t) = \sum_{n=1}^{\infty} a_n e^{-k\left(\frac{(n-\frac{1}{2})\pi}{L}\right)^2 t} \cos\frac{(n-\frac{1}{2})\pi x}{L}$$
 3

for some constants a_n .

Question 5 (Fourier Transforms). [25p] Use the Fourier Transform to solve

$$\begin{cases} u_t = k u_{xxx}, & -\infty < x < \infty, \quad 0 < t < \infty, \\ u(x,0) = f(x). \end{cases}$$
(5)

[HINT: You may give your answer as a double integral, or as a convolution of 2 functions.]

Taking Fourier Transforms, the problem becomes

,

$$\begin{cases} U_t = (i\omega)^3 k U = -ik\omega^3 U \\ U(\omega,0) = F(x). \end{cases}$$

which has solution

$$U(\omega, t) = F(\omega)e^{-ik\omega^3 t}.$$
 5

If we define $G(\omega) = e^{-ik\omega^3 t}$, then we have $U(\omega, t) = F(\omega)G(\omega, t)$. So u(x, t) = g(x, t) * f(x)by where

$$g(x,t) = \mathcal{F}^{-1}[G](x,t) = \int_{-\infty}^{\infty} e^{-ik\omega^3 t} e^{i\omega x} d\omega = \int_{-\infty}^{\infty} e^{-i(k\omega^3 t - \omega x)} d\omega.$$
 5

Therefore

$$u(x,t) = g(x,t) * f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\xi)g(x-\xi,t) \ d\xi.$$
 5