

2014.04.09	MAT372 K.T.D.D. – Ara Sınavın Çözümler	i N. Course
Soru 1 (Canonica	al Forms). Consider the partial differential equation	
	$xu_{xx} + u_{yy} = x^2$	(1)
(where u_x means	$\frac{\partial u}{\partial x}$ etc).	
(a) [1p] Equation	(1) is a	
1^{st} order	PDE; $\checkmark 2^{nd}$ order PDE; $\qquad \qquad 3^{rd}$ order PDE;	; $\qquad \qquad 4^{\text{th}} \text{ order PDE}$
(b) [1p] Equation	(1) is a	
	homogeneous PDE; \checkmark non-homogeneous	PDE.
(c) [1p] Equation	(1) is a	
\checkmark linear Pl	DE; quasilinear PDE; non-linear (and	not quasilinear) PDE.
(d) $[6p]$ For each ($(x,y) \in \mathbb{R}^2$, classify (1) as hyperbolic, parabolic or ellipt	ic.
	$x^2 - 4AC = 0^2 - 4 \times x \times 1 = -4x$, the PDE is hyperbol d elliptic for $x > 0$.	lic for $x < 0$, parabolic

For parts (e), (f) and (g), suppose that x > 0.

(e) [10p] Find the characteristic equation of (1).

The characteristic equation of (1) is

$$\frac{dy}{dx} = \frac{B \pm \sqrt{\Delta}}{2A} = \frac{\pm \sqrt{-4x}}{2x} = \pm \frac{i}{\sqrt{x}}.$$

$$xu_{xx} + u_{yy} = x^2 \tag{1}$$

(f) [10p] Find the characteristic curves of (1).

Solving $\frac{dy}{dx} = \pm ix^{-\frac{1}{2}}$, we see that $y = \pm 2ix^{\frac{1}{2}} + c = \pm 2i\sqrt{x} + c$

(g) [21p] Find a canonical form for (1). [HINT: I don't want to see x or y in your final answer.] By part (f), we choose $\xi = y - 2i\sqrt{x}$ and $\eta = y + 2i\sqrt{x}$. Then, because we are studying an elliptic PDE, we choose $\alpha = \text{Re}(\xi) = y$ and $\beta = \text{Im}(\xi) = -2\sqrt{x}$. We can calculate

$$\alpha_x = 0, \ \alpha_y = 1, \ \alpha_{xx} = 0, \ \alpha_{xy} = 0, \ \alpha_{yy} = 0,$$

and

$$\beta_x = -x^{-\frac{1}{2}}, \ \beta_y = 0, \ \beta_{xx} = \frac{1}{2}x^{-\frac{3}{2}}, \ \beta_{xy} = 0, \ \beta_{yy} = 0.$$

Therefore

$$A^{**} = 0 + 0 + 1 = 1$$

$$B^{**} = 0 + 0 + 0 = 0$$

$$C^{**} = x(-x^{-\frac{1}{2}})^2 + 0 + 0 = 1$$

$$D^{**} = 0 + 0 + 0 + 0 + 0 = 0$$

$$E^{**} = x\left(\frac{1}{2}x^{-\frac{3}{2}}\right) + 0 + 0 + 0 + 0 = \frac{1}{2}x^{-\frac{1}{2}}$$

$$F^{**} = 0$$

$$G^{**} = x^2.$$

Hence

$$u_{\alpha\alpha} + u_{\beta\beta} + \frac{1}{2}x^{-\frac{1}{2}}u_{\beta} = x^2.$$

The final step is to substitute for x,

$$u_{\alpha\alpha} + u_{\beta\beta} - \frac{1}{\beta}u_{\beta} = \left(-\frac{1}{2}\beta\right)^4 = \frac{\beta^4}{16}$$

Therefore, the canonical form for (1) is

$$u_{\alpha\alpha} + u_{\beta\beta} = \frac{1}{\beta}u_{\beta} + \frac{\beta^4}{16}.$$

Soru 2 (The method of characteristics). Consider

$$\begin{cases} \frac{\partial u}{\partial t} - 3t^2 \frac{\partial u}{\partial x} = -u \\ u(x,0) = 2e^x. \end{cases}$$
(2)

(a) [40p] Use the method of characteristics to solve (2).

I think that this is the easiest question on this exam – I hope that you choose this one.

First we replace the PDE by a system of 2 ODEs:

$$\frac{du}{dt} = -u$$
 and $\frac{dx}{dt} = -t^2$

The solution of the second ODE is

$$x(t) = -t^3 + x(0)$$

and the solution of the first ODE is

$$u(x(t),t) = Ke^{-t} = u(x(0),t)e^{-t} = 2e^{x(0)}e^{-t} = 2e^{x(0)-t}$$

The final step is to substitute for x(0). Therefore the solution of (2) is

$$u(x,t) = 2e^{x(0)-t} = 2e^{x+t^3-t}.$$

$$\begin{cases} \frac{\partial u}{\partial t} - 3t^2 \frac{\partial u}{\partial x} = -u \\ u(x,0) = 2e^x. \end{cases}$$
(2)

(b) [10p] To check your answer to part (a), calculate u_t , u_x , $(u_t - 3t^2u_x)$ and u(x, 0).

```
Since
```

we have that

 $u_t = 2(3t^2 - 1)e^{x + t^3 - t}$ $u_x = 2e^{x + t^3 - t}.$

Therefore

$$u_t - 3t^2u_x = (2(3t^2 - 1)e^{x+t^3 - t}) - 3t^2(2e^{x+t^3 - t}) = -2e^{x+t^3 - t} = -u_t^3$$

 $u(x,t) = 2e^{x+t^3-t}$

so the PDE is satisfied. Finally, clearly

$$u(x,0) = 2e^{x+0^3-0} = 2e^x$$

so the initial condition is also satisfied.

Soru 3 (General Solution). Suppose that $\xi = y - 9x$ and $\eta = y - x$.

(a) [20p] Use the chain rule (e.g. $u_x = u_\xi \xi_x + u_\eta \eta_x$, etc.) to show that

$$u_{xx} + 10u_{xy} + 9u_{yy} = -64u_{\xi\eta}.$$

Since $\begin{aligned} u_x &= u_{\xi}\xi_x + u_{\eta}\eta_x = -9u_{\xi} - u_{\eta} \\ u_y &= u_{\xi}\xi_y + u_{\eta}\eta_y = u_{\xi} + u_{\eta} \\ u_{xx} &= (u_x)_{\xi}\xi_x + (u_x)_{\eta}\eta_x = (-9u_{\xi\xi} - u_{\eta\xi})(-9) + (-9u_{\xi\eta} - u_{\eta\eta})(-1) = 81u_{\xi\xi} + 18u_{\xi\eta} + u_{\eta\eta} \\ u_{xy} &= (u_x)_{\xi}\xi_y + (u_x)_{\eta}\eta_y = (-9u_{\xi\xi} - u_{\eta\xi})(1) + (-9u_{\xi\eta} - u_{\eta\eta})(1) = -9u_{\xi\xi} - 10u_{\xi\eta} - u_{\eta\eta} \\ u_{yy} &= (u_y)_{\xi}\xi_y + (u_y)_{\eta}\eta_y = (u_{\xi\xi} + u_{\eta\xi})(1) + (u_{\xi\eta} + u_{\eta\eta})(1) = u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta} \\ \text{it follows that} \\ u_{xx} + 10u_{xy} + 9u_{yy} = (81u_{\xi\xi} + 18u_{\xi\eta} + u_{\eta\eta}) + 10(-9u_{\xi\xi} - 10u_{\xi\eta} - u_{\eta\eta}) \\ &\quad + 9(u_{\xi\xi} + 2u_{\xi\eta} + u_{\eta\eta}) \\ &= u_{\xi\xi}(81 - 90 + 9) + u_{\xi\eta}(18 - 100 + 18) + u_{\eta\eta}(1 - 10 + 9) \\ &= -64u_{\xi\eta}. \end{aligned}$

(b) [5p] Show that

$$y = \frac{9\eta - \xi}{8}.$$

Since $\xi = y - 9x$ and $\eta = y - x$, it follows that

$$9\eta - \xi = 9(y - x) - (y - 9x) = 8y.$$

Therefore

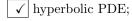
$$y = \frac{9\eta - \xi}{8}$$

Now consider the second order partial differential equation

$$u_{xx} + 10u_{xy} + 9u_{yy} = y \tag{3}$$

(where u_x means $\frac{\partial u}{\partial x}$ etc).

(c) [5p] Equation (3) is a



parabolic PDE;

elliptic PDE.

(d) [20p] Find the general solution of (3). [HINT: I don't want to see ξ or η in your final answer.]

By parts (a) and (b),

$$-64u_{\xi\eta} = u_{xx} + 10u_{xy} + 9u_{yy} = y = \frac{9\eta - \xi}{8}.$$

 So

$$512u_{\xi\eta} = \xi - 9\eta.$$

Integrating (wrt η) gives

$$512u_{\xi} = \int 512u_{\xi\eta} \, d\eta = \int \xi - 9\eta \, d\eta = \xi\eta - \frac{9}{2}\eta^2 + f(\xi)$$

for some function f. Then integrating (wrt ξ) gives

$$512u(\xi,\eta) = \int 512u_{\xi} \, d\xi = \int \xi\eta - \frac{9}{2}\eta^2 + f(\xi) \, d\xi = \frac{1}{2}\xi^2\eta - \frac{9}{2}\eta^2\xi + 512F(\xi) + 512G(\eta)$$

for some functions F and G.

The final step is to change back to x and y: The general solution of (3) is

$$u(x,y) = \frac{1}{1024}(y-9x)^2(y-x) - \frac{9}{1024}(y-x)^2(y-9x) + F(y-9x) + G(y-x).$$