

2016.03.30	MAT372 K.T.D.D. – Ara Sınavın Çözümleri	N. Course

Soru 1 (Characteristics). Consider the PDE

$$\frac{\partial u}{\partial t} + \frac{u}{3}\frac{\partial u}{\partial x} = 0 \tag{1}$$

with the initial condition

$$u(x,0) = \begin{cases} 1 & x < 2\\ 3 & x > 2. \end{cases}$$
(2)

- (a) [1p] Please write your student number at the top right of this page.
- (b) [5p] Replace (1) by a system of 2 ODEs.

$$\frac{du}{dt} = 0, \ \frac{dx}{dt} = \frac{u}{3}$$

(c) [15p] Plot the characteristics (t against x) for this problem.

The solution of
$$u' = 0$$
 is $u(x,t) = u(x(0),0)$, and the solution of $x' = \frac{1}{3}u(x(0),0)$ is

$$x(t) = x(0) + \frac{1}{3}u(x(0),0)t = \begin{cases} x(0) + \frac{t}{3} & x(0) < 2\\ x(0) + t & x(0) > 2. \end{cases}$$
Thus

 \checkmark fan-like characteristics shock wave characteristics neither both

(e) [15p] Solve

subject to

$$\frac{\partial u}{\partial t} + \frac{u}{3}\frac{\partial u}{\partial x} = 0$$
$$u(x,0) = \begin{cases} 1 & x < 2\\ 3 & x > 2. \end{cases}$$

As above, u(x,t) = u(x(0),0) and $x(t) = x(0) + \frac{1}{3}u(x(0),0)t$. Therefore

$$u(x,t) = \begin{cases} 1 & x < 2 + \frac{t}{3} \\ ??? & 2 + \frac{t}{3} < x < 2 + t \\ 3 & x > 2 + t. \end{cases}$$

For the middle interval, we use the equation $x = x(0) + \frac{1}{3}ut$ with x(0) = 2 to calculate that $u = \frac{3x-6}{t}$. Therefore

$$u(x,t) = \begin{cases} 1 & x < 2 + \frac{t}{3} \\ \frac{3x-6}{t} & 2 + \frac{t}{3} < x < 2 + t \\ 3 & x > 2 + t. \end{cases}$$

(f) $[3 \times 4p]$ Sketch the graph (u against x) of the solution at times t = 0, t = 1 and t = 2.

Soru 2 (Change of variables). Consider the second order, linear PDE $A(x,y)u_{xx} + B(x,y)u_{xy} + C(x,y)u_{yy} + D(x,y)u_x + E(x,y)u_y + F(x,y)u = G(x,y).$ (3)

Suppose that $\xi(x, y)$ and $\eta(x, y)$ are twice continuously differentiable functions of x and y. Using the chain rule, we can calculate that

$$u_x = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial u}{\partial \eta} \frac{\partial \eta}{\partial x} = u_\xi \xi_x + u_\eta \eta_x.$$

- (a) [1p] Please write your student number at the top right of this page.
- (b) [24p] Use the chain rule to find formulae for u_y , u_{xy} , u_{xx} and u_{yy} in terms of $u_{\xi\xi}$, $u_{\xi\eta}$, $u_{\eta\eta}$, u_{ξ} , u_{η} , u, ξ_{xx} , ξ_{xy} , ξ_{yy} , ξ_{x} , ξ_{y} , η_{xx} , η_{xy} , η_{yy} , η_{x} and η_{y} .

As above, $u_y = u_\xi \xi_y + u_\eta \eta_y$. 3 Therefore $\begin{aligned} u_{xy} &= (u_x)_y = (u_\xi \xi_x + u_\eta \eta_x)_y \\ &= (u_\xi)_y \xi_x + u_\xi \xi_{xy} + (u_\eta)_y \eta_x + u_\eta \eta_{xy} \\ &= (u_{\xi\xi} \xi_y + u_{\xi\eta} \eta_y) \xi_x + u_\xi \xi_{xy} + (u_{\eta\xi} \xi_y + u_{\eta\eta} \eta_y) \eta_x + u_\eta \eta_{xy} \\ &= u_{\xi\xi} \xi_x \xi_y + u_{\xi\eta} (\xi_x \eta_y + \xi_y \eta_x) + u_{\eta\eta} \eta_x \eta_y + u_\xi \xi_{xy} + u_\eta \eta_{xy}. \end{aligned}$ By replacing all the y's with x's, it is easy to see that $u_{xx} = u_{\xi\xi} \xi_x \xi_x + 2u_{\xi\eta} \xi_x \eta_x + u_{\eta\eta} \eta_x \eta_x + u_{\xi\xi} \xi_{xx} + u_{\eta\eta} \eta_{xx}. \end{aligned}$ Similarly, by replacing all the x's with y's, we have

 $u_{yy} = u_{\xi\xi}\xi_y\xi_y + 2u_{\xi\eta}\xi_y\eta_y + u_{\eta\eta}\eta_y\eta_y + u_{\xi}\xi_{yy} + u_{\eta}\eta_{yy}.$ 7

By substituting your answers to part (b) into (3), we obtain an equation of the form

$$A^{*}(\xi,\eta)u_{\xi\xi} + B^{*}(\xi,\eta)u_{\xi\eta} + C^{*}(\xi,\eta)u_{\eta\eta} + D^{*}(\xi,\eta)u_{\xi} + E^{*}(\xi,\eta)u_{\eta} + F^{*}(\xi,\eta)u = G^{*}(\xi,\eta).$$
(4)

(c) [25p] Show that

$$B^*(\xi,\eta) = 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y.$$

We are only interested in the $u_{\xi\eta}$ terms. From Au_{xx} , we obtain $2Au_{\xi\eta}\xi_x\eta_x$. From Bu_{xy} , we obtain $Bu_{\xi\eta}(\xi_x\eta_y + \xi_y\eta_x)$. From Cu_{yy} , we obtain $2Cu_{\xi\eta}\xi_y\eta_y$. Note that $Du_x + Eu_y + Fu - G$ will not give us any $u_{\xi\eta}$ terms. Therefore

 $Au_{xx} + Bu_{xy} + Cu_{yy} + Du_x + Eu_y + Fu - G$ = (some $u_{\xi\xi}$ terms) + ($2Au_{\xi\eta}\xi_x\eta_x + Bu_{\xi\eta}(\xi_x\eta_y + \xi_y\eta_x) + 2Cu_{\xi\eta}\xi_y\eta_y$) + (some $u_{\eta\eta}$ terms) + (some smaller derivative terms).

It follows that we must have $B^*(\xi,\eta) = 2A\xi_x\eta_x + B(\xi_x\eta_y + \xi_y\eta_x) + 2C\xi_y\eta_y$.

Soru 3 (General Solution). Consider the partial differential equation

$$u_{xx} - \frac{1}{c^2}u_{yy} = -\frac{4}{c^2}y - \frac{4}{c^3}x\tag{5}$$

where $c \neq 0$ is a constant.

- (a) [1p] Please write your student number at the top right of this page.
- (b) [1p] Equation (5) is a

1^{st} order PDE;	\checkmark 2 nd order PDE;	$3^{\rm rd}$ order PDE;	4^{th} order PDE.

 $\mathbf{3}$

homogeneous PDE; \checkmark non-homogeneous PDE.

non-linear AND quasilinear;

(d) [1p] Equation (5) is

 \checkmark linear;

non-linear, but not quasilinear.

The discrimant of (5) is $\Delta = B^2 - 4AC = \frac{4}{c^2} > 0$.

(e) [1p] Equation (5) is a/an

 \checkmark hyperbolic PDE; parabolic PDE; elliptic PDE.

The characteristic equation of (5) is

$$\frac{dy}{dx} = \frac{B \pm \sqrt{\Delta}}{2A} = \pm \frac{1}{c}$$

which has solutions $y + \frac{x}{c} = (\text{constant})$ and $y - \frac{x}{c} = (\text{constant})$.

(f) [22p] Find a canonical form for (5).

Let $\xi = y + \frac{x}{c}$ and $\eta = y - \frac{x}{c}$. Then $\xi_x = \frac{1}{c}$ $\eta_x = -\frac{1}{c}$ $\xi_y = 1$ $\eta_y = 1$ $\xi_{xx} = 0$ $\eta_{xx} = 0$ $\xi_{xy} = 0$ $\eta_{xy} = 0$ $\xi_{yy} = 0$ $\eta_{yy} = 0$

and

and

$$A^* = 1\left(\frac{1}{c}\right)^2 + 0 - \frac{1}{c^2}(1)^2 = 0$$

$$B^* = 2(1)\left(\frac{1}{c}\right)\left(-\frac{1}{c}\right) + 0 + 2(-\frac{1}{c^2})(1)(1) = -\frac{4}{c^2}$$

$$C^* = 1\left(-\frac{1}{c}\right)^2 + 0 - \frac{1}{c^2}(1)^2 = 0$$

$$D^* = 0 + 0 + 0 + 0 + 0 = 0$$

$$E^* = 0 + 0 + 0 + 0 + 0 = 0$$

$$F^* = 0$$

$$G^* = G = -\frac{4}{c^2}y - \frac{4}{c^3}x$$

Since $-\frac{4}{c^2}y - \frac{4}{c^3}x = -\frac{4}{c^2}\xi$, we have that $-\frac{4}{c^2}u_{\xi\eta} = -\frac{4}{c^2}\xi$. It follows that a canonical form for (5) is $u_{\xi\eta} = \xi.$

(g) [23p] Find the general solution to

$$u_{xx} - \frac{1}{c^2}u_{yy} = -\frac{4}{c^2}y - \frac{4}{c^3}x$$

where $c \neq 0$ is a constant.

First we need to solve

$$u_{\xi\eta} = \xi.$$

Integrating with respect to η gives

$$u_{\xi} = \int u_{\xi\eta} \, d\eta = \int \xi \, d\eta = \xi\eta + f(\xi)$$

for some function f. Then integrating with respect to ξ gives

$$u(\xi,\eta) = \int u_{\xi} \, d\xi = \int \xi \eta + f(\xi) \, d\xi = \frac{1}{2}\xi^2 \eta + F(\xi) + G(\eta)$$

for some functions F and G.

Changing back to x and y, we obtain

$$u(x,y) = \frac{1}{2}\left(y + \frac{x}{c}\right)^2 \left(y - \frac{x}{c}\right) + F\left(y + \frac{x}{c}\right) + G\left(y - \frac{x}{c}\right).$$